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Notation

Symbol

A Aspect ratio, = L/D

C p Constant pressure specific heat

D Width of enclosure

g Acceleration due to gravity

gc Dimensional constant in Newton's second law

GR Grashof number, = g(O H- c)D
3/v 2

h Local heat transfer coefficient, = q/0C- H

k Thermal conductivity

L Height of enclosure

Nu Local Nusselt number, - hDk

Nu Mean value of Nusselt number

p Local dynamic pressure
2

poD 2go
P Dimensionless pressure, =po g

V-P

Pr Prandtl number, = g cpCp/k

q Heat flux at hot wall

S Inclination angle

t Time

u Velocity in x-direction

U Dimensionless velocity in X-direction, = uD/v

v Velocity in y-direction

V Dimensionless velocity in Y-direction, = vD/v

x Distance along hot wall

X Dimensionless distance along hot wall, = x/D
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Symbol

y Distance from hot wall

Y Dimensionless distance from hot wall, = y/D

Greek Letters
_ k

a Molecular thermal diffusivity, = Cp

0 Volume coefficient of thermal expansion

AX Grid spacing in X direction

AY Grid spacing in Y direction

AT Time increment

C Dimensionless vorticity, = -(-LT + 3y)

6 Temperature (6-, and 6C refer to the temperatures at
the hot and coyd walls respectively).

0 Dimensionless temperature, = (e-e I)/(OC-aH)

V Kinematic viscosity

U Viscosity

p Density

T Dimensionless time, = tv/D
2

T Dimensionless stream function, such that U=aY/3Y and
V= -a/aX

W Relaxation parameter

* Slat angle

Subscripts

i,j Space grid point indices in X and Y directions

opt Value of relaxation parameter giving fastest conver-
gence.

w Wall grid point

Superscripts

n Time index

m Iternation number

vii



Abstract

A numerical investigation was conducted on two-dimen-

sional natural convection within inclined rectangular en-

closures partitioned into 45 degree triangular cells. The

time dependent governing equations, vorticity, energy, and

stream function, were solved by an ADI method and a Gauss-

Seidel SOR technique. The numerical procedure was validat-

ed for rectangular enclosures, then modified for triangular

cells. Heat transfer coefficients were determined for an

inclined square enclosure with a diagonal partition for

Grashof numbers less than 2.x105  and inclination angles9
between 10 degrees and 90 degrees. These results show a

diagonal partition reduces the heat transferred by natural

convection across an inclined square enclosure by more than

50%.
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NUMERICAL SOLUTION OF NATURAL CONVECTION

IN AN INCLINED RECTANGULAR CAVITY

WITH PARTITIONS

I. Introduction

Background

A major factor in the design of solar collectors is

the reduction of natural convection heat losses within the

collector enclosure. Traditional designs have suppressed

natural convection by developing large aspect ratio enclo-

sures or designing a small aspect ratio honeycomb structure

to separate the collector plates (Ref.l). However, recent

experimental studies by Meyer, el.al. (Ref.2), and Holland

(Ref.3) have demonstrated the effectiveness of inclined

slats (partitions) in reducing natural convection heat loss-

es. The slats in these studies were positioned to form a

series of moderate aspect ratio parallelogram enclosures.

Meyer, et.al., also concluded that slats oriented downward

from the hot plate resulted in a reduction of convective

heat transfer with the minimum heat loss occurring at a

slat angle of 45 degrees.

ObjectiveI . In the present study, the influence of slats in



reducing natural convection will be determined for non-

parallel slat arrangements. Specifically, the slats will

be oriented so as to partition a moderate aspect ratio rec-

tangular enclosure into a series of triangular regions (see

Figure 1). The temperature distribution and the cell heat

transfer coefficients will then be determined theoretical-

ly by a numerical procedure which will also be developed

for this investigation. The heat transfer coefficient for

the triangular cells will then be compared to results ob-

tained for similar rectangular enclosures with and without

slats. From these results the effectiveness of triangular

slat arrangements will be determined.

The first step in this investigation, however, will be

to adapt a numerical procedure which is capable of solving

the nonlinear partial differential equations which describe

natural convection in an inclined enclosure. The implicit

finite difference computational scheme developed by Wilkes

and Churchill (Ref.4) is just such a procedure. Since the

Wilkes and Churchill numerical procedure was developed for

a rectangular cavity with one vertical wall hot and the

other cold, the method will be first modified to describe

an inclined rectangular cavity, then modified again to ac-

count for the addition of partitions in the rectangular en-

closure.

$
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Figure 1. Triangular Partitioned Enclosure.
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Scope "

In this study, natural convection heat transfer coeffi-

cients were evaluated for moderate aspect ratio (A=1.0 to 3.0)

rectangular enclosures with thin partitions. The partitions

were oriented at ±45 degress to the hot wall. Thermal con-

duction was assumed to be infinite across the partitions and

zero along the partitions. Additionally, the steady state

temperature distribution along a partition was considered

linear. Finally, since only heat transferred due to nat-

ural convection was to be evaluated, thermal radiation heat

transfer within the enclosure was neglected.

To follow the development of the present investigation,

this report is organized into five additional chapters.

The time dependent governing equations which describe nat-

ural convection in inclined rectangular cavities are devel-

oped in Chapter II. In Chapter III, a numerical procedure

is developed to evaluate the governing equations. A dis-

cussion of the numerical results is presented in Chapter IV.

Finally, the significant conclusions are restated, and recom-

mendations are made for further studies in Chapter V and VI,

respectively.

4
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II. Mathematical Model

In this section the governing equations describing nat-

ural convection in a 2-D inclined rectangular cavity will be

developed. The equations and boundary conditions will then

be simplified and rewritten in nondimensionalized form. Fin-

ally, an expression for local and average heat transfer co-

efficient will be derived.

Rectangular Cavity

Consider the inclined, rectangular cavity in Figure 2.

The left and right walls are at constant temperatures aH) and

6C, respectively, and the other side walls are either insul-

ated or have a linear temperature distribution. Initially,

the fluid in the cavity is motionless, and at a constant

temperature equal to the average temperature of the hot and

cold walls. The fluid thermodynamic and transport proper-

ties except density are considered constant and independent

of temperature. Under the Boussinesq Approximation, density

changes are expressed only as a function of temperature dif-

ferences, and density is assumed constant except in the buo-

yant force terms.

Under these conditions, the fluid in an inclined rec-

tangular cavity is described by the following equations:

5
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Conservation of Mass

au + -v 0 (1)
x ay

Conservation of Momentum

-a- au -uu au + -2 sin(S)+ _--_ + (2)

ge x ge Dy ax ge (ax ayz (2

av +P2Vp _ -g cosS)+ --," xY + v (3)

g ST g x g -ay ay ge

Conservation of Energy

+2 U2 +va + (4)

-+ -+ v ( - .W-U

Coefficient of Volumetric Expansion

1 apI = PoP (5)

P - P( 6 0eo)(5

The associated boundary and initial conditions are as

follows:

O(x,O,t) = 0a  (6)

O(x,D,t) = C  
(7)

7
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Linear Temperature Side Walls

0(0,yt) = eH+(0H- c)y/D

(8)

e(L,y,t) = eH+(eH-ec)y/D

Adiabatic Side Walls

3e
-(0,y ,t) = 0

(9)
36-x(L,y,t) = 0

Cavity Wall No-Slip Condition

u(x,O,t) = u(x,D,t) = 0
(10)

v(O,y,t) = v(L,y,t) = 0

Initial Conditions

u(x,y,O) = 0

v(x,y,0) = 0 (11)

O(x,y,0) H2

Since the pressure gradient in the cavity results in part

from the change in elevation of the fluid, it is conven-

ient to derive an expression for the total pressure grad-

ient in terms of the dynamic pressure gradient and the

change in pressure due to the weight of the fluid.

8



p p0... £ePIf(sin S)x+(cos S)y] (12)

Differentiating this expression yields

= - 9 Po sin(S) (13)ax ax 9

2p-apo g
ay y g c Ocos(S) (14)

Substituting from Equations (13),(14) and (5) into equations

(2) and (3) and simplifying

au Du au _ 9 aP0  a2u 32U+ c aeO-e)g si+~(at UTj Tp ax x=(S +v j. - ay )(15 )

avS(S\J L 3V~a ayY(1
av+ a2- av _ y a 0  (60-0)g co( ( + )(6

at ay p a

Equations (1), (15), (16) and (4), and the associated

boundary and initial conditions can be restated in nondimen-

sional form. The nondimensional parameters are defined in

the List of Symbols.

§ax av

9



a+ U2u+ VE-J - p DI DI~aUa + aU UU G R 0 sin(S)+t& + T(18)

DV av V P D2V + v
-- 

+ U- + Vt-- -5y GR E sin(S)+tx +W (19)

DO + aO a 1 F20 9201

3T Ur +v-- += t--[-ij (20)

e(x,o,T) = 0

o(x,1,T) = 1.0

0(0,Y,T) = O(A,Y,T) = Y

Do D

--(O,Y,) = -L(A,Y,T) = 0(21)

U(X,O,T) = U(X,1,T)= V(A,Y,T) = V(O,Y,T) 0

U(X,Y,O) = V(X,Y,O) = 0

0(X,Y,O) = 0.5

The pressure terms in Equations (18) and (19) can now

be eliminated by differentiating Equation (18) and (19) with

respect to Y and X , respectively, subtracting and simpli-

fying the resulting expression with Equation (17). This pro-

cess yields Equation (22).

10
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arFau avi +U Fau avi vrau avi
aT L 3Y 5axl La -3y XJ LrY Tx-j

= GR os(S)T - sin(S)301+ 2 -aV- 3V

+ P -- - avi(22)

If a vorticity function (r) is now defined as

U - a v (23)

and the stream function (T) is introduced, where

U -LT (24)

V aX (25)

Equation (22) can be rewritten in terms of vorticity, and

Equation (23) in terms of the stream function.

+U- -Vy = GF sin(s)T - cos(S) 7 01
~T+.X +V-j Rsl ay x

+ -a + "Y (26)

= + L (27)

11
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*17

The governing equations and boundary conditions which de-

scribe natural convection in an inclined rectangular cavity

can now written in their final form.

Vorticity Equation

ac +ac + Vac - G[sin(S)o - cos(S) 30

+ a2 + (28)

Energy Equat ion

_U 1 E ra2e + 32e1
3 u- +v - R Lx (29)

Stream Function Equation

-2 a'+2 (30)

Velocity Component Equations

U @- (31)3Y

V = a._ (32)ax

12



Boundary Condit ions

U(0,Y,T) = U(A,Y,T) = 0

V(X,o,T) = V(X,1,T) 0 o

T(OYT) = '(A,Y,T) = (X,0,T) = '(X,1,7) 0 (33)

G(X,O,T) 0 o

O(X,1,T) = 1.0

Adiabatic Side Walls

x(o,Y,T) = - A,Y,T) o (34)

Linear Temperature Side Walls

(0,YT)= O(A,Y,T) Y (35)

Initial Conditions:

U(X,Y,0) V(X,Y,0) = 0

T(X,Y,O) =(X,Y,0) 0 (36)

e(X,Y,O) 0.5

Heat Transfer Coefficients

Local and a,,erage heat transfer coefficients are ex-

pressed as non-dimensional Nusselt asumbers.

Nu = D/k (37)

13
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Local Nusselt Number

The convection heat transfer coefficient (h) at the

hot wall is defined as follows:

-k( / Ywall

h= eH 0c (38)

Introducing the definition of Nu, Equation (37), 0 , and

Y , Equation (38) becomes

Nu =(m-) (39)~ay wall

Average Nusselt Number

To obtain an average Nusselt Number, Nu, along the hot

wall, the local Nusselt Numbers, Nu, are integrated over the

length of the hot wall.
oNu dx

Nu dx(40)

jdx

Partitioned Cavity

A review of the mathematical model of natural convec-

tion in an inclined rectangular enclosure shows the govern-

ing Equations (28), (29), (30), (31) and (32) are indepen-

dent of the enclosure geometry. Therefore, these equations

can be applied to triangular enclosures, and only the boun-

dary conditions need to be changed.

14
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The partitions will be placed in the enclosure at

0=±45 degrees with respect to the hot wall, and also all

partition steady state temperature distributions will be

linear. Therefore, applying these assumptions, the boun-

dary conditions for the partitions can now be written.

4 = 450

T(l.O-Y,Y,T) = Y (41)

U(I.0-Y,Y,T)sin4+V(I.O-Y,Y,T)sin = 0

S= -45

O(YYT) = Y

T(Y,Y,-) = 0
(42)

U(Y,Y,x)sinO+V(Y,Y,T)sin = 0

Now the partition boundary conditions can be used in com-

bination with those for the rectangular cavity to complete-

ly describe the boundaries of an inclined rectangular en-

closure with partitions.

15



III. Numerical Procedure

Rectangular Enclosure

This section contains a description of the procedure

that was used to solve the system of equations developed

in the previous section. This procedure was adapted from

a finite difference computational procedure developed by

Wilkes and Churchill (Ref.4) to study natural convection

in a rectangular enclosure with one vertical wall heated

and the other cooled. This procedure is illustrated by a

flow chart in Figure 3. Because the procedures are so sim-

ilar, tests of stability and convergence were not rigorous-

ly carried out in this study.

The geometry of the rectangular enclosure and the fin-

ite difference nomenclature are shown in Figure 4. The

mesh spacing in the X-direction is LX and the Y-direction

is AY . Subscripts (ij) are associated with each mesh

point, so that the space variables may be expressed as

Xi=(i-l)AX , for i=1,2,...,I and Yj=(j-I)AY , for j=

1,2,3,...,J. Time is segmented into equal intervals AT

so that the nondimensional time T is T=nAT for n=0,1,2.

The notation i'j denotes the values of the variable

at mesh point (ij) at time level n

The first equation to be solved from nAT to (n+I)AT

is the energy equation (29), which is parabolic in time,

16



START

READ
INITIAL CONDITIONS
PRGRDX,DY,DT,S

SOLVE:ENERGY EQUATION
ASSUME: U AND V CONSTANT^n+1

RESULT: 0

SOLVE:VORTICITY EQUATION

ASSUME: U AND V CONSTANT,
n+l  n+l
nX and , CONSTANT

n
and ¢ CONSTANT

wall

SOLVE: STREAM FUNCTION
EQUATION

n+1
USE:

i ,j
n+1

RESULT:T
i,j

IJ
SOLVE:VORTICITY AT WALL

n+1
USE: T

i.,j
n+1

RESULT: 1
wall1

Figure 3. Numerical Procedure Sequence of
Solutions of the Governing Equations.
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IfI

CALCULATE: VELOCITY FIELD

RESUL T: 0+ , V+

CALCULATE: LOCAL AND
AVERAGE NUSSELT

NUMBER

I ADVANCE TIME ]

STEP ONE INCREMENT

AND RETURN TO

Figure 3. Continuation of Numerical Procedure Sequence
of Solution of the Governing Equations.

nonlinear and of second order. The solution to this equa-

tion is advanced one time level by using an implicit alter-

nating direction (ADI) technique developed by Peaceman-

Rachford (Ref.7).

To apply the ADI method to the energy equation (29) re-

quires the coefficient velocities U and V to be held con-

stant at any grid point over a time step. Now the partial

derivatives in Equation (29) can be approximated by finite-

differences. (Note: All space derivatives are central dif-

ferences.)

18



j+1

Figure 4. Inclined Rectangular Enclosure Finite-
Difference Grid Representation
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0

T=(n+J)AT

-~ nFn+j fl+j ~ n n-l
1,j ,j + un F i+lJ j i-l,.. V n , J+1 ij- -

SiJL 2AX +AY

- 2 0-FOzi -20' +02

1 i+l,j + nI j+ ig+ . • ij (43)
Pr AX 2  r AY2

T:(n+l)A

n+ njn+ n + n', n+1l+ n+1
0 . 0- 0 +ni_ j10 +

i___1_i + _ + V.. iiS
AT2ij 2AX 2AY

0 -~ 20'4- n 4 + +2LFln +1 20 n+ +
__n+___-2___+__+___ -l,__ + 1 j i,j i,j-1
1 i+l,j r. .___ _ (44)

Pr AX 2 
P AY2

Equations (43) and (44) are implicit in X and Y direc-

tions, respectively, and when applied to every point in a

row or column, as the case may be, yield a tridiagonal matrix
^n+ n+1

in the unknown temperatures 0i or Oi,j In this study,

a tridiagonal algorithm adapted by Roache (Ref.7) was used to

20



solve the tridiagonal matrices. ,

The vorticity equation (28) which has characteristics

similar to the energy equation, can now be solved by the ADI

method for new values of vorticity at the n inner grid

points. The vorticity at the boundary points will remain

at their old nAT values during this calculation, and will

be advanced later. Because there is a temperature gradient

in the vorticity equation (28), the new (n+l)AT tempera-

ture field will be used to evaluate the temperature gradient

at each grid point. The temperature gradient will then be

held constant throughout the calculation. The finite differ-

ence representations of the vorticity are

Sn+ C n)An+j n+-r Cn  n

i+j ij n i+1,j i-1 +n, ij+l -i.j

Avu/2 i'j 2AX 2AY

0 n+1 0n+1 0 /n+1 on+1
= GRsin(s)(i 1j+ l- cos(S) i+l, i- )

G i()2AY co()2AX

1n+j n+j n+ q n n n 1

ni+I ''i , i J+1 -  i j + Ci j -  (45)

21
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T=(n+1)AT

+I n+ n+j n+1 C n+1
1,3j -,3 n oi+i S i+ j i i+1-I

AT /22AX 2AY

n+l n+l ( n+l ne - -1 . - 1
=Gsin(S)(iji+1 1 j1) cos(s)( i+1,j

R s ( 2AY K2AX

C n* _ + +nj n+1 -Cn+l ~
+ i+,, , j i-l + j 'J-1 (46)

AX2  AY2

Equations (45) and (46) are also implicit in X and Y

directions, respectively, and when applied to every point in

a row or column, as the case may be, also yield a tridiagonal

matrix. These matrices are solved by the same algorithm that

was used for solving the energy equation.

With the new interior vorticity field calculated, the

method of successive over-relaxation is used to solve the

stream function equation for the new stream function field.

The expression for the m+1 iteration of the stream func-

tion at a point is as follows:

( m+I)=,?(m)+c _ AX2n+l ..(m) +T (m) (Tm) +~) a()

i,j i1, 4LAXi,j i-l,j i+l,j i,j-I i,j+l i,j]

22



TABLE I

OPTIMUM VALUES OF RELAXATION PARAMETER FOR USE IN EQ.(47)
(Ref.4)

No. of grid spacings:

X Direction Y Direction AX(=AY) WOPT

10 10 0.2 1.58

20 20 0.05 1.83

20 10 0.1 1.70

30 10 0.1 1.73

Wilkes and Churchill (Ref.4) determined optimum values

of relaxation parameters for some representative grid sizes

as seen in Table I. Using these values, Wilkes and Church-

ill experienced good convergence at each grid point with

about twenty five iterations. In this study twenty five

iterations were performed for each grid point using the op-

timum value of the relaxation parameters in Table I.

The new wall vorticities can now be determined from the

new stream function field. In this study, two wall vorticity

expressions were used depending upon the Grashof Number of

the fluid. Wilkes and Churchill results indicated the first

expression will cause instabilities above GR= 2 0 0 ,000.

n~l 8n+i .n+l
n+1 8T n+1 - T n+-_ i,2 when GR 2 00,O00 (48)
i ,0 2(Y)2

23
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n2n+1 1
n+ 2) =j - he R200, 000 (49)

ii

2) 1'0 (AY),~ when G R>2 0  O(9

Both expressions were derived by Wilkes and Churchill (Ref.4)

The new velocity fields U and V can now be calcul-

ated from the new stream function field. In this study sec-

ond order space central finite difference approximations were

used for the new velocities.

n + 1 ij+l-2itj+i'j-I (50)
i,j 2AY

n~ -2'Vi "+'i1

v n+1 Ti+1,j -J i,,j (51)
1,3 2AX

These expressions differ from those of Wilkes and Churchill

who used a fourth order finite difference approximation.

Now using the newest temperature field, the local and

average Nusselt Numbers can also be calculated. The deriv-

ative in Equation (39) is expressed by a second order for-

ward finite difference relation.

oi -40i +30it

Nu = i,3 i,2 + i (52)
2AY

The average Nusselt Number is obtained by integration using

the Trapezoidal rule.

IL
24

4. .7,



Partitioned Cavity

In the previous chapter, the mathematical model of nat-

ural convection in an inclined rectangular enclosure with

partitions was developed. The governing equations were de-

termined to be unchanged. However, new boundary conditions

were necessary to describe the partitioned enclosure. In

this section, the numerical procedure previously developed

will be modified to account for 45 degree partitions. And

finally, a method of solution of a partitioned rectangular

enclosure will be discussed.

Numerical Procedure Modification. The two significant

modifications made to the inclined rectangular enclosure

numerical procedure were; 1) a new wall vorticity model for

the 45 degree partition, and 2) local heat transfer coeffi-

cients for the partition. While the wall vorticity models

used in the rectangular enclosure are accurate for grid

points along the mesh, the following expression (see Ref.7

page 144) provides a more accurate evaluation of the wall

vorticity of a sloping wall ( =45 degrees) with AX=AY.

2(Tiw-lJw +iwjw+l-2Y iwjw) (53)
AX

This expression was used to evaluate the wall vorticity of

all partitions.

Finally, the local heat transfer equation was modified

to determine the heat transfer coefficient across a
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partition. First and second order finite difference schemes

were sufficient for all grid points along the partition ex-

cept the end points. At the end points, the heat transfer

coefficient across the partition was determined to be equal

to the heat transferred along the partition. Details of the

heat transfer coefficients expressions can be found in Ap-

pendix B.

Solution Method. Since the natural convection govern-

ing equations did not change with the addition of parti-

tions, each triangular cell can be independently solved by

assuming common boundary conditions for the neighboring tri-

angles. However, it is then necessary to compute an energy

balance at each partition grid point. If the partition boun-

dary conditions do not balance, it is necessary to iterate

the triangular cell partition boundary conditions until the

heat transfer coefficients and temperatures match. This it-

erative procedure, however, was simplified in this study by

the thermal characteristic of the partition model.

In this study, the partition model steady state temp-

erature distribution was linear, and the partition was a

pure conductor across the partition. Because of these ther-

mal characteristics, the temperature and heat transfer co-

efficients at each partition grid point always match.

Therefore, it was decided to build a composite model of the

rectangular enclosure with partitions.

26



The composite model was composed of individual tri-

angular cells which were each solved independently. Then

the solutions were added together to obtain the final nat-

ural convection heat transfer results. A complete compu-

ter program listing is in Appendix B.

4
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IV. Discussion of Results

The discussion of results centers on two areas: deter-

mining the validity and accuracy of the numerical procedure

and computer code; and determining the effect of partition-

ing an inclined rectangular enclosure into triangular re-

gions on natural convection heat transfer.

The computations were conducted (using a CDC 6600 com-

puter) for air cavities (Pr=.7 3 33 ) with aspect ratios from

1.0 to 3.0 at heat fluxes yielding GR values up to 2x105 .

Rectangular Enclosure Numerical Results

To determine the validity and accuracy of the numeri-

cal procedure, transient and steady state heat transfer re-

sults were obtained for rectangular enclosures at various

inclination angles, aspect ratios, side wall boundary con-

ditions and Grashof numbers. These results were then com-

pared with previous numerical results obtained by Wilkes

and Churchill (Ref.4), Koutsoheras (Ref.5), and Ozoe, et.al.

(Ref.6). A complete summary of the computer runs is pre-

sented in Appendix A.

Vertical Rectangular Enclosure. The accuracy of the

heat transfer solution was determined by comparing the steady

state numerical solution of the rectangular enclosure in the

vertical position (S=900 )

28
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TABLE II

Comparison of Steady State Mean Nusselt Numbers

Wilkes &
Grashof Aspect Side wall Mean Nusselt Churchill Per-
Number Ratio Boundary Number ('N-u) Mean Nus- cent

(GR) (A) Condition selt no. Diff.
Nu

20000 2.0 Insulated 3.036 2.874 5.60

20000 2.0 Insulated 3.141 2.992 4.98

20000 3.0 Insulated 2.954 2.825 4.56

60000 1.0 Insulated 4.905 4.793 2.34

100000 1.0 Insulated 6.136 5.512 11.30

20000 1.0 Linear 2.061 2.068 0.34

with heat transfer results attained by Wilkes and Churchill

(Ref.4). A comparison of the two results is shown in Table

Ii.

The results in Table II show that in each comparison,

the numerical procedure developed in this study overestimates

by five to 12 percent the mean Nusselt numbers achieved by

Wilkes and Churchill. This difference in results could be

caused by one or both of two differences in the numerical

procedures.

In this investigation, the velocity field was calculat-

ed from the new stream functions with a second order finite

difference representation. On the other hand, Wilkes and

Churchill used a fourth order finite difference model to
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calculate the velocity field. The higher order model yields

more accurate velocities per time step. But, since this in-

vestigation was primarily interested in the steady state sol-

ution, the improved accuracy of the transient solution vel-

ocity field was not necessary. So it was decided to use the

less complicated second order finite difference representa-

tion.

A second difference between the numerical methods

could be the finite difference representation used to deter-

mine the local Nusselt numbers at the hot wall. The wall

heat flux approximation used by Wilkes and Churchill (Ref.4)

was not specified in their report. So, it was decided to

calculate the local heat flux with a se ond order, forward

difference approximation in this study. The second order ap-

proximation will provide sufficient accuracy for comparison

and trend information, but may represent the difference ob-

served in the heat transfer results.

One further comparison of the two numerical procedures

was to compare the transient heat transfer results. Figure

5 is a plot of this study's mean Nusselt numbers vs. non-

dimensional time, starting from the initial condition to

steady state. The shape and indicated trends of the trans-

ient solution curve is identical to the plot achieved by

Wilkes and Churchill (Ref.4). A conclusion that can be de-

duced from this result is that eventhough the two numerical
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procedures produce slightly different values for mean Nus-

selt numbers, the difference is constant throughout the sol-

ution. Therefore, the numerical procedure developed in this

study is an adequate numerical model of transient, as well

as steady-state, natural convection in a vertical rectan-

gular enclosure.

Inclined Rectangular Enclosure. The previous discus-

sion was limited to determining the adequacy of this study's

numerical procedure for the vertical rectangular enclosure.

Now it is necessary to analyze the results of the numerical

procedure and computer code over the total planned operat-

ing range of each of the variables. Figures (6), (7), and

(8) illustrate the effects of inclination angle, aspect ra-

tio, Grashof number, and side wall boundary conditions on

heat transfer. The following are conclusions which can be

drawn from the figures.

I. Effect of Side Wall Boundary Conditions. Figures

(6) and (7) show that the heat transfer at the hot wall is

a strong function of the side wall boundary conditions. The

heat transferred at the hot wall decreases approximately 35%

when the side walls are changed from an insulated boundary

to a pure conductor across the boundary (linear temperature

distribution along the side wall). The effect of the side

wall boundary condition also appears to be independent of

Grashof number and inclination angle. The results of this
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Figure 6. Effect of Side Wall Boundary
.Conditions on Heat Transfer.

effect are in excellent agreement with those reported by

Koutsoheras (Ref.5).

II. Effect of Inclination Angle. The effect of inclina-

tion angle is best illustrated by Figure 7. The highest heat

transfer takes place when the enclosure is inclined at 600

from the horizontal. However, the total change in heat trans-

fer due to a change in inclination angle is insignificant when

compared to side wall boundary conditions and aspect ratio

changes. This result was previously observed by Koutsoheras

(Ref.5) and Ozoe (Ref.6).

III. Effect of Aspect Ratio. The effect of aspect ratio

on heat transfer for the case of moderate aspect ratio enclo-

sures with insulated side walls is illustrated in Figure 8.

4
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3. Adiabatic

GR - 20000

A - 1.0

E

Linear

30 60 90

Inclination Angle, S

Figure 7. Effect of Inclination Angle on Heat Transfer for

Two Side Wall Boundary Conditions
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This figure shows that changes in Grashof number and in-

clination angle have a stronger influence on heat transfer

in a rectangular enclosure where A=1.0 than in enclosures

with A=2.0 or 3.0. This is due to the side wall distur-

bances in a square enclosure occupying a larger proportion

of the enclosure than in higher aspect ratio cavities.

In summary, the numerical results for the inclined mod-

erate aspect ratio rectangular enclosure indicate the val-

idity of the numerical procedure and computer code.

Effect of Partitions

In this section, the validity of natural convection

heat transfer results for composite rectangular enclosures

will be determined. Then, the heat transfer results for

the partitioned enclosure will be compared to heat trans-

fer results of rectangular enclosures without partitions.

From these comparisons the effectiveness of partitions in

reducing natural convection heat transfer across and en-

closure will be resolved.

Composite Enclosures. To determine the validity of

composite heat transfer solutions, two partitioned rectangu-

lar enclosures were investigated. These enclosures are

shown in Figure (9). The square enclosure is composed of

two triangular cells while the rectangular enclosure (A=2)

is composed of three triangular cells. Natural convec-

tion heat transfer coefficients were evaluated for each of
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Figure 9. Partitioned Rectangular Enclosures
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these triangular cavities. The heat transfer coefficients

of adjoining triangular cells were then compared at the

common partition boundary.

In the square enclosures, the total heat transfer a-

cross the partition was balanced, however, heat conduction

along the partition was required to maintain the partition

boundary linear temperature distribution. On the other

hand, the total heat transfer across the partitions in the

rectangular enclosure (A=2.0) did not balance, eventhough

the total heat transfer at the hot and cold walls were bal-

anced. These results indicate valid composite heat trans-

fer solutions exist only for square enclosures with a diagon-

al partition. An iterative numerical procedure is required

for other than square enclosure.

Partitioned Square Enclosures. To determine the effec-

tiveness of diagonal partitions in suppressing natural con-

vection, heat transfer coefficients were evaluated for three

square enclosures with adiabatic side walls at various in-

clination angles, and Grashof numbers. The results are

shown in Figure 10.

From this figure, it was concluded that a diagonal par-

tition in a square enclosure reduces natural convection heat

transfer by more than 50%. An explanation for the substan-

tial decrease in natural convection heat transfer across the

square enclosure is that the diagonal partition increases

38
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the wetted surface area by 70%. And, when air flows over

this surface, additional friction forces are generated which

suppress the natural convection in the enclosure.

Figure 10 also illustrates the effect of partition angle

on natural convection heat transfer. The partition oriented

at 4=-45 degrees to the hot wall provided an additional 15%

decrease in natural convection heat transfer when compared to

the partition at =45 degrees . To provide an expanation

for this further decrease in heat transfer, the steady state

temperature distributions for the three square enclosures

were examined in Figures 11, 12 and 13.

From these figures, it was concluded that the partition

angle affects the thickness of the thermal boundary layer at

the hot wall. The partition oriented at ¢=-45 degrees re-

sulted in the greater reduction in heat transfer because it

produced the thicker thermal boundary layer on the lower half

of the hot wall (the region of highest heat transfer), as

evidenced by the increased spacing between isotherms.

In summary, the composite heat transfer solution was val-

idated for square enclosures with partitions. Then, a diagon-

al partition in an inclined enclosure was determined to re-

duce natural convection heat transfer by more than 50%.

40
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Figure 11. Steady State Isotherms in a
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V. Conclusions

Conclusions

The results of this study provide the following con-

clusions:

1. The finite difference numerical procedure yields

valid transient and steady state, natural convection heat

transfer coefficients for air filled, inclined, moderate

aspect ratio, rectangular enclosures. The procedure is

limited to GR<2.OxIO5  , and 10S 90 .

2. A thin diagonal partition in an inclined square en-

closure with insulated side walls reduces natural convec-

tion across the enclosure by more than 50%.
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VI. Recumiendations

Recommendations

The following recommendations are suggested for fol-

low on investigations:

1. Numerical techniques should be developed which

would extend the present procedure's Grashof number limi-

tation of 2.0x10 5

2. A numerical procedure should be developed to eval-

uate natural convection heat transfer in an inclined rec-

tangular enclosure with more than one partition. One ap-

proach to this procedure would be to assume an initial par-

tition temperature distribution, compute the flow field in

each partition cell, then compare the resulting heat trans-

fer coefficients at each partition grid point. If the heat

transfer coefficients do not balance, select a new partition

temperature distribution, and repeat the process until the

heat transfer coefficients balance at each partition grid

point. This procedure preserves the computational effi-

ciency obtained with tridiagonal matrices.

3. The effects of radiation heat transfer within the

enclosure on partition, and side wall thermal boundary con-

ditions should be investigated.

45

. . . . ° o.. ."t • • " , • 7 . . I



Bibliography

1. Buchberg, H., Catton, I., and Edwards, D.K., "Natural
Convection in Enclosed Spaces-A Review of Application
to Solar Energy Collection," Journal of Heat Transfer,
May 1976, pp.182-188.

2. Meyer, B.A., Mitchell, J.W., and El-Wakil, M.M., "Nat-
ural Convection Heat Transfer in Moderate Aspect Ratio
Enclosures," Journal of Heat Transfer, November 1979,
pp.655-659.

3. Hollands, K.G.T., "Studies of Methods of Reducing Heat
Losses from Flat-Plate Solar Collectors," ERDA Annual
Progress Report, COO-2597-3, University of Waterloo,
Waterloo, Onterio, Canada, 1977.

4. Wilkes, J.O. and Churchill, S.W., "The Finite Differ-
ence Computation of Natural Convection in a Rectangu-
lar Enclosure," A.I.Ch.E.J. Vol.12,Nov 1,1966,ppl6l-166.

5. Koutsoheras, W.. Charters, W.W.S. "Natural Convection
Phenomena in Inclined Cells with Finite Side Walls-
Numerical Solution," Solar Energy,Vol.19,May 1977,

pp.433-438.

6. Ozoe, H., Sayama, H1. and Churchill, S.W., "Natural
Convection in an Inclined Square Channel," Inter. J. of
Heat and Mass Transfer, Vol.17,Feb. 1974,pp.401-406.

7. Roache, P.J., Computational Fluid Dynamics, Albuquerque;
Hermosa Publishers, 1976.

46



Appendix A

Numerical Data

Triangular Cell with 4,=45'

H L L.T

DX =DY =0.1 DT 0.002

GRAR S iNii
20000 1.0 90 1.5088

60 1.5885
1.0 30 1.4610

60000 1.0 90
60 2.7108
30 2.5536

100000 1.0 90
60 3.389
30 2.5536

200000 1.0 90
60 4.5353

_______________ 30 3.7664
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Triangular Cell with q=450

H L.T

DX =DY =0.1 DZ =0.002

GR AR S N-u

20000 1.0 90 1.1546
60 1.21657
30 1.17399

60000 1.0 90 1.6820
60 1.96207
30 1.9933

100000 1.0 90 2.1197

30 2.61767

200000 1.0 90 2.9630

1_____1__ 30 1 3. 7764
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Rectangular Cavity

DX =DY 0.1 DT =.002

G R AR S

20000 1.0 90 3.036
60 3.395
30 3.271
90 2.874

20000 2.0 90 3.141
60 3.367
30 3.244
90 2.992

20000 3.0 90 2,954
60 3.081
30
90 2.825

60000 1.0 90 4.905
60 5.349
30 5.0615
90 4.793

60000 2.0 90 4.720
60 5.010
30 4.8642

60000 3.0 90 4.390
60 4.6197
30 4.3779

100000 1.0 90 6.136
60 6.699
30 6.2863

____ ___ ___90 5.512 '
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G R  AR SN-

100000 2.0 90 6. 136
60 6.0683
30 5.8112

100000 3.0 90 5.271
60 5.5385
30 5.2912

200000 1.0 90 7.9696
2.0 90 7.0052
3.0 90 6.4187

200000 1.0 30 8.6576
2.0 30 7.3584
3.0 30 6.6134

200000 1.0 60 8.8755
2.0 60 7.5066
3.0 60 6.7237
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Appendix B

Computer Code Listing

I. Inclined Rectangular Enclosure with Insulated Side-

walls.

II. Inclined Triangular Enclosure 0=45 degrees, In-

sulated Side Wall.

III. Inclined Triangular Enclosure p=45 degrees, In-

sulated Side Wall.

IV. Inclined Triangular Enclosure Two Partition Walls.

V. Tridiagonal Algorithm Subroutine.

Computer Code Notation

AR Aspect Ratio

DT Time Increment

DX Grid Spacing X-direction

DY Grid Spacing Y-direction

GR Grashof Number

IX Number Grid Points in X-direction

IY Number Grid Points in Y-direction

PR Prandil Number

S Inclination Angle (Degrees)

S1 Inclination Angle (Radians)

ST Stream Function

T Dimensionless Temperature

. U Dimensionless Velocity in X-direction
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V Dimensionless Velocity in Y direction

VOR Vorticity

NUC Local Nusselt Number-Cold Wall

NUH Local Nusselt Number-Hot Wall
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